Post Job Free
Sign in

1 2 Construction Engineering

Location:
Obuasi, Ashanti, Ghana
Salary:
Any amount
Posted:
July 12, 2025

Contact this candidate

Resume:

Page * of *

EMT ***: Calculus with Analysis

Instructions

1. Students are to provide detailed solution to the following questions according to the groupings. [4 Marks]

2. Students are to type the solutions using MS WORD and its associated mathematics tools. [10 Marks]

3. Using font size of 12 and double spacing. [2 Marks] 4. Save the document as the group name. E.g. GROUP 1, GROUP 2, etc. [2 Marks] 5. Submit the soft copy through ********@*****.*** straight from the computer on or before 22

nd

July, 2025, by 3:00 pm. NB: PDF will NOT be accepted. [2 Marks] GROUP 1

Evaluate the following integrals

1. 3(2 + 4)5

2. 2 3 + 1

3.

(1 − 6 )4

4. cos3 sin

5.

sec2(

1

)

2

6.

2 − 2 − 1

( − 1)2( 2 + 1)

7. Find the Eigen-values and its corresponding eigenvectors for the matrix = 2 0 0

0 3 4

0 4 9

.

GROUP 2

Evaluate the following integrals

1. sin 2

2. 2( 3 + 5)9

3. (3 − 2)20

4. (3 + 2)2.4

5. + 1 2 + 2

6.

+ 4

2 − 2 + 5

7. Find the Eigen-values and its corresponding eigenvectors for the matrix = 1 1 −2

−1 2 1

0 1 −1

.

Page 2 of 8

GROUP 3

Evaluate the following integrals

1.

( 2 + 1)2

2.

5 − 3

3. sin

4.

2 + 1

5.

+ 2

3 + 3

6.

3 2 + + 4

4 + 3 2 + 2

7. Find the Eigen-values and its corresponding eigenvectors for the matrix = 1 2 2

0 2 1

−1 2 2

.

GROUP 4

Evaluate the following integrals

1.

4 2 − 7 − 12

+ 2)( − 3)

2

1

2.

2 + 2 − 1

3 −

3.

1

( + 5)2( − 1)

4.

2 − 5 + 16

(2 + 1)( − 2)2

5.

3 + 4

2 + 4

6.

2( − 1)2

GROUP 5

Evaluate the following integrals

1. (1 + tan )5 sec2

2. 1 +

3. cos sin

4.

22

3 1 + 3

5.

tan−1

1 + 2

6.

1

3 − 1

7. Find the Eigen-values and its corresponding eigenvectors for the matrix = 1 2 3

0 2 3

0 0 3

.

Page 3 of 8

GROUP 6

Evaluate the following integrals

1. tan sec2

2.

sin

3.

cos

sin2

4.

+ 1

5. cot csc2

6. Solve the system of equation using cramer’s rule; 3 + 4 − 3 = −2

−2 + 3 − = −1

2 + − 2 = 6

GROUP 7

Evaluate the following integrals

1.

cos

л

2

2.

sin 2

1 + cos2

3.

sin

1 + cos2

4. sec2

4

л

0

5. csc л cot л

1

2

1

5

6. Solve the system of equation using cramer’s rule;

−3 + + = −4

− + 2 − 2 = 1

2 − − = −1

Page 4 of 8

GROUP 8

Evaluate the following integrals

1. tan3

л

6

л

6

2. 2

1

0

3.

1

2

2

1

4.

2 sin

1 + 6

л

2

л

2

5.

3 (1 + 2 )2

13

0

6. cos sin(sin )

л

2

0

7. Solve the system of equations using cramer’s rule; 2 − 5 + 3 = 8

3 − + 4 = 7

+ 3 + 2 = −3

GROUP 9

Evaluate the following integrals

1. 2 + 2 ( > 0)

1

0

2. 2 − 2

0

3. − 1

2

1

4.

1 + 2

4

0

5.

6. Find the eigenvalues and its corresponding eigenvectors for the matrix = 2 −3 0

2 −5 0

0 0 3

.

Page 5 of 8

GROUP 10

Evaluate the following integrals

1.

+ 1

+

1

0

2. sin

2

0

3.

sin−1

1 − 2

1

2

0

4. 2

5. cos

7. Solve the system of equation using cramer’s rule; 2 1 − 2 + 3 = 5

1 + 2 + 3 = 9

4 1 + 2 − 3 = 7

GROUP 11

Evaluate the following integrals

1. cos5

2.

2

3. 2sinл

4. 2 + 1

5.

6. Solve the system of equation using matrix invertible approach; 2 1 − 2 + 3 = 5

1 + 2 + 3 = 9

4 1 + 2 − 3 = 7

Page 6 of 8

GROUP 12

Evaluate the following integrals

1. sin 2

2. 2cos

3. sin−1

4. arctan4

5. sec2 2

6. 2

7. Solve the system of equations using matrix invertible approach; 2 − 5 + 3 = 8

3 − + 4 = 7

+ 3 + 2 = −3

GROUP 13

Evaluate the following integrals

1. 20 sin 3

2. sin 3

л

0

3. cosh

1

0

4.

2

2

1

5. 5

6. Solve the system of equation using matrix invertible approach;

−3 + + = −4

− + 2 − 2 = 1

2 − − = −1

Page 7 of 8

GROUP 14

Evaluate the following integrals

1. sinh

2. cos2

3. 2 + 1

1

0

4.

9

4

5. 3 cos

л

0

6. Solve the system of equation using matrix invertible approach; 3 + 4 − 3 = −2

−2 + 3 − = −1

2 + − 2 = 6

GROUP 15

Use integral by parts to prove the reduction formula. 1. −1 2. = − 1

3. tan =

tan −1

− 1

− tan −2 ( 1)

4. sec =

tan sec −2

− 1

+

− 2

− 1

sec −2 ( 1)

5. Solve the system of equation by matrix inversion; 2 1 + 2 + 2 3 = 0

2 1 − 2 + 3 = 10

1 + 3 2 − 3 = 5

Page 8 of 8

GROUP 16

Evaluate the following integrals

1. sec 2 tan 2

2. 2

3.

+

( 0)

4.

cos

5. sin 1 +

3

2

6. cos sin6

7.

2 − 4 − 13

1

0

8. Find the Eigen-values and its corresponding eigenvectors for the matrix = 1 4 2 3

.

GROUP 17

Evaluate the following integrals

1.

5 2 + 3 − 2

3 − 2 2

2.

2 − + 6

3 − 3

3.

10

( − 1)( 2 − 9)

4.

2 + + 1

( 2 − 1)2

5.

3 + 2 + 2 + 1

( 2 − 1)( 2 + 2)

GROUP 18

Evaluate the following integrals

1.

1

2 − 1

3

2

2.

− 1

2 + 3 + 2

1

0

3.

2 −

4.

1

5.

3 − 2 2 − 4

3 − 2 2

4

3

6.

3 − 4 − 10

2 − − 6

1

0



Contact this candidate