SYLLABUS: MATHEMATICS
FOR GROUP ‘X’ (TECHNICAL TRADES)
1. Sets, Relations and functions
2. Trigonometric Functions
3. Inverse Trigonometric Functions
4. Complex Number and Quadratic Equations
5. Linear Inequalities
6. Mathematical Induction
7. Permutations and Combinations
8. Binomial Theorem
9. Sequences and Series
10. Cartesian system of rectangular co-ordinates
11. Straight lines and family of lines
12. Circles and family of circles
13. Conic sections
14. Three-dimensional Geometry
15. Matrices and Determinants
16. Limit and Continuity
17. Differentiation
18. Applications of Derivatives
19. Indefinite integrals
20. Definite Integrals
21. Applications of the Integrals
22. Differential Equations
23. Mathematical Reasoning
24. Linear Programming
25. Vector
26. Probability
27. Statistics
gaiNat
MATHEMATICS
Q.1. yaid sambanQa R [sa p`kar pirBaaiYat hO ik R={(x,y) : 2x+y=41, x, y N } tao R, inamna maoM sao iksa p`kar ka sambanQa hO ?
What is the nature of relation R, if R is defined as R ={(x,y) : 2x+y=41, x, y N } ?
(A) svatulya / reflexive (B) samaimat / symmetric
(C) saMkamak / transitive
(D) [namaoM sao kao[- nahIM / None of these
Ans:D
Q.2. cos24cos55cos125cos204cos 0 0 0 0 300 0 ?
(A)
2
1
(B)
2
3
(C) 3 (D) 0
Ans:A
Q.3. ?
1
1
sec 2
2
1
x
x
(A) 2 tan
-1
x (B) 2 x
2
(C) 2 cot
-1
x
(D) x
2
Ans:C
Q.4. Aitprvalaya 9x
2
– 16y
2
=144 kI naaiBayaaM &at krao .
Find the foci of hyperbola 9x
2
– 16y
2
=144.
(A) (0, 5) (B) ( 5, 0) (C) ( 5, 1) (D) (5, 1)
Ans:B
Q.5. ]sa i~Bauja kI p`kRit &at krao ijasako SaIYa- ibandu A(12, 8), B(-2, 6) va C(6, 0) hOM . Find the nature of the triangle whose vertices are A(12, 8), B(-2, 6) & C(6, 0).
(A) samaiWbaahu samakaoNaIya i~Bauja /Isosceles Right angle triangle
(B) samabaahu i~Bauja/Equilateral triangle
(C) ivaYamabaahu i~Bauja / Scalene triangle
(D) [namaoM sao kao[- nahIM / None of these
Ans:A
Q.6. xy Plaona pr p`%yaok ibandu P ( x, y, z ) ko ilae,, For every point P ( x, y, z ) on the xy - plane,
(A) x 0 (B) y 0 (C) z 0
(D) None of these
Ans:C
Q.7.
( 6 5 i ) 2
ka saMyaugma &at krao .
Find the conjugate of
( 6 5 i ) 2 .
(A) 60 11 i
(B)
11 60 i
(C)
11 60 i (D) 60 11 i
Ans:B
2
Q.8. C ( n, r ) 2 C ( n, r 1 ) C ( n, r 2 ) ? .
(A) C ( n 1, r ) (B) C ( n 2, r ) (C) C ( n 2, r 1 ) (D) C ( n 1, r 1 ) Ans:B
Q.9. ek gauNaao<ar EaoNaI ka n vaa^ pd
2 n hO tao [sako p`qama 6 pdaoM ka yaaoga &at kIijae . If
n th term of a G.P. is
2 n then find the sum of its first 6
terms.
(A) 126 (B) 124 (C) 190 (D) 154
Ans:A
Q.10.
6
1
3
x
x ko ivastar maoM
x 2 ka gauNaaMk &at kIijae .
Find the coefficient of
x 2 in the expansion of
6
1
3
x
x .
(A) 405 (B) 7290 (C) 2430 (D) 1215
Ans:D
Q.11. ?
0
0
0
2
b a
c a
c b
(A) a 2 b 2 c 2 (B) 4 a 2 b 2 c 2 (C)
4
1 a 2 b 2 c 2 (D) a b c 2
Ans:B
Q.12. yaid
1 0 0
0 1 0
0 0 1
A tao A 1 ?
If
1 0 0
0 1 0
0 0 1
A, then A 1 ?
(A) A (B) A (C) I (D) – I
Ans:A
Q.13. yaid [-ka[- ka GanamaUla hO tao
1
1
1
2
2
2
= ?
If is the cube root of unity, then
1
1
1
2
2
2
= ?
(A)1 (B) (C) 2 (D) 0
Ans:D
3
Q.14.
x
x x
x
sin( 2 ) sin(2 )
lim
0
= ?
(A) cos 2
2
1
(B) 1 (C) 2cos 2 (D) 0
Ans:C
Q.15. tansec 1 (x tan x ) ?
dx
d
(A) –
2
1
(B) 1 (C) – 1 (D)
2
1
Ans:D
Q.16. yaid x y y x c tao
2
2
dx
d y
&at krao .
Find
2
2
dx
d y
, if x y y x c .
(A)
c
2
(B) – 2
2
c
(C) 2
2
c
(D) 2
4
c
Ans:C
Q.17. ek Gana kI Baujaa maoM 3 saomaI/saokND kI dr sao vaRiw hao rhI hO . yaid Gana kI Baujaa 10 saomaI hO tao ]sako Aayatna maoM haonao vaalaI vaRiw kI dr (saomaI
3
/ saokoND maoM) &at krao .
An edge of a cube is increasing at the rate of 3 cm/sec. Find the rate at which does the volume increase (in cm
3
/sec) if the edge of the cube is 10 cm.
(A) 900 (B) 725 (C) 700 (D) 825
Ans:A
Q.18. yaid s t 3 4 t 2 5 kNa ka gait batata hO AaOr %varNa lauPt hao tao [saka vaoga ( [-ka[- p`it sakoND) mao If s t 3 4 t 2 5 describes the motion of a particle, then its velocity (in unit/sec) when the acceleration vanishes, is
(A)
9
16
(B)
3
32
(C)
3
4
(D)
3
16
Ans:D
Q.19. saM#yaaAaoM 8, 12, 13, 15, 22 ka maanak ivacalana &at krao . Find the standard deviation of 8, 12, 13, 15, 22.
(A) 3.54 (B) 3.72 (C) 4.21 (D) 4.6
Ans:D
Q.20. yaid ek isa@ko kao tIna baar ]Calaa jaata hO tao isa@ko maoM ek yaa dao SaIYa- Aanao kI P`aaiyakta &at krao . If a coin is tossed thrice, find the probability of getting one or two heads.
(A)
5
4
(B)
8
5
(C)
4
3
(D)
7
6
Ans:C
4
Q.21. yaid ibanduAaoM
A ( 60 i 3 j ),
( 40 8 )
B i j AaOr
C ( a i 52 j ) samaroK hOM tao a =?
If the points
A ( 60 i 3 j ), ( 40 8 )
B i j, and
C ( a i 52 j ) are collinear, then a is equal to
(A) 40 (B) -40 (C) 20
(D) -20
Ans:B
Q.22. sin x dx ?
3
3
2
(A) 1 (B)
4
3
3
(C)
4
1
2
(D) 0
Ans:B
Q.23. dx ?
cos x . sin x
cos x
2 2
2
(A) cot x tan x c (B) cot x tan x c (C) cot x tan x c (D) tan x cot x c Ans:A
Q.24. Avakla samaIkrNa e x y x e y
dx
dy 2 ka hla &at krao .
Find the solution of the differential equation e x y x e y dx
dy 2 .
(A) c
y
e x e y
3
3
(B) c
x
e x e y
3
3
(C) c
x
e x e y
3
3
(D) c
y
e x e y
3
3
Ans:C
Q.25. vak y 2 2 y x
AaOr y - Axa sao pirbaw xao~ ka xao~fla (vaga- maa~k maoM) &at krao . Find the area of the region (in sq.units) bounded by the curve y 2 2 y x
& y - axis.
(A)
3
8
(B)
3
4
(C)
3
5
(D)
3
2
Ans:B