SUPRIYATELU
MACHINELEARNINGENGINEER
WORKHISTORY:
MachineLearningEngineer/2018-current
Identifiednewproblemareasandresearchedtechnicaldetailstobuildinnovativeproducts andsolutions.
Createdcustomizedapplicationstomakecriticalpredictions,automatereasoningand decisions,andcalculateoptimizationalgorithms.
Transformedrawdatatoconformtoassumptionsofmachinelearningalgorithm.
AnalysisofdataandRunningmachineLearningexperimentsusingaprogramminglanguage withmachinelearningalgorithms.
Deployingmachinelearningsolutionsintoproduction.
Datacollection,DataCleaning(convertintostructuredata),choosingtherightmachine learningmodel,DataVisualizationandDeployment.
Studiednewtechnologiestosupportmachinelearningapplicationsi.e,NaturalLanguage Processing.
PROFESSIONALSUMMARY:
I'mSophisticatedMachineLearningEngineerwithbackgroundinindependentresearchusing intuitive,web-basedarchitecture.SkilledinwithDocumentedhistoryofdiscoveringmethodsto intelligentlyusedatatoenhanceuserexperience.Effectivelyresearchestechniquesfordifferent approachtosolveaproblemfrokscratchdatacollectiontodeployingapplicationintoproduction yieldinginsightstoexpandscustomerconsciousness.
*******.******@*****.***
EDUCATION
BachelorofTechnology:ElectronicsandCommunicationEngineering/2014-2018achievedfirst classwithdistinctionfromGokarajuRangarajuInstituteofEngineeringandTechnology, Hyderabad,Telangana.
SKILLS
NaturalLanguage
processing
MachineLearning
Python
SQLforData
science
FlaskWebFrame
work.
Deployment
Documentation
Skills
MSOffice
Familiarwith
Linuxand
Windows.
PROJECTS:
1.RECOMMENDATIONSYSTEM:
PROBLEMSTATEMENT:BasedonInternalDocumentContent
RecommendingAuditObservationstotheuserwhichtheuser mayfaceinfuture.
Tools:IftheDocumentisPDF,extractingtextbythefollowing toolslikeImagemagick,Ghostscript,OCR(Tesseract-ocr) Librariesused:Pandas,numpy,sklearn,textract,wand,
tesseract,ghostscript,os,nltk,TF-IDFTransformer,count vectorizer,
APPROACH:MainAimistoExtractTextfromDocument(PDF/
docx/doc).AfterTextextractionusingNaturalLanguage
processingbasedonkeywordspresentinthecontentand
observationsrecommendingobservationstothecurrent
document.
2.AuditSimilarObservations:Fetchingthesimilar
observationsbasedonAuditorgivenobservationwithprevious historicaldata.
3.RecommendingTrainingtotheEmployeebasedonJobRole
andJobDescriptionbasedonpreviousdata.
4.RecommenderSystem:RecommendingDocumenttotrainee
basedonthecurrentdocumentlikeyoutuberecommendation whenwewatchvideo,wegetrecommendationbasedongenre
wewatch.
4.AuditSuccessrateprediction:BasedontheAuditordata, predictingwhetherauditissuccessornotbasedon
consideringfeaturesliketypeofobservation(critical,major, minoretc.),repeatedobservations,departmentandsite. 5.FeedbackAnalytics:basedonthetypeoffeedbackquestion, trainerorcourse,ratingofcourseandalsotrainerbasedonthe availabledata.