Post Job Free

Resume

Sign in

Engineer Chemical/Metallurgical Engineer

Location:
Freeport, PA
Salary:
105000
Posted:
March 28, 2020

Contact this candidate

Resume:

*

Professional Career Summary (** years) with experience in:

New product development and phase transformation pathway simulation to access expected microstructures with desired mechanical properties.

Metallurgy process improvement and processing parameter optimization including casting, forging, hot and cold rolling, additive manufacturing, carburizing, chemical and physical processing, single crystal growth and heat treatment.

Modeling capability developments to predict the number density, size and volume fraction of precipitation and recrystallization behavior during forging and hot rolling.

Al-alloy, Ti-alloy, Ni-based superalloys design and manufacturing for aerospace and automotive industries.

Cross-functional team collaborations to provide technical expertise and solve problems in broad areas of materials and processes in support based on physical and chemical metallurgy principles. Professional Experience:

Staff Engineer, Arconic, New Kensington, PA Feb. 2019-Sep. 2019

Predicting the microstructure evolution during casting, hot rolling, forging, and heat treating of aluminum alloys based on thermodynamic and kinetic modeling and FEM.

Additive manufacturing: high energy irradiation, alloy melting and solidifying rapidly, and processing parameter optimization using thermodynamic and kinetic calculations and FEM.

Ingot hot tearing: with considering tensile strain, growth of grains and liquid feeding to predict the ingot hot tearing using Thermo-Calc and ProCast.

Modeling capability developments:

to predict the number density, size, and volume fraction of Al3Zr_L12 dispersoids during annealing process of Micromill Al-alloys,

to predict core-shell Al3(Sc,Zr) dispersoid for next generation Al-alloy.

Ti-alloy development: alloy design and the α- and β-phase evolution based on thermodynamic and kinetic calculations and Phase field simulations.

Model development to predict grain size at different cooling rate during solidification by combining the experimental investigations and theoretical calculations.

Predicting the hot rolling, forging, extrusion, and recrystallization processes using DEFORM.

Computer program development using python, C++, R, and R-Shiny. Assistant scientist, Ames Laboratory-DOE, Ames, IA, 06/2007-02/2019, (postdoc 08/2004- 06/2007):

Alloy design and development based on thermodynamic and kinetic calculations and phase field simulations:

for Al-Sm-La-Tb-Cu-Zr-Pd-Si alloys to understand the crystallization, chemical reaction pathway and new metastable phase formations,

Key Competencies:

Thermodynamics/Kinetics/

Finite element Analysis (FEM)

/Computational fluid

dynamics (CFD),

ANSYS/ProCast/DEFORM,

Python/C++/Matlab/

R-Shiny/ Fortran/JAVA,

DSC/DTA/TEM/SEM/XRD/

HEXRD,

VASP/Thermo-Calc/

DICTRA/TC-PRISMA,

GSAS/CaRIne/ImageJ/VESTA.

Shihuai Zhou

109 Cherokee CT, Freeport, PA 16229

Tel. 515-***-****

E-Mail: adch30@r.postjobfree.com

2

for magnetic B-Fe-Co-Ni-Dy-Gd-Nd-Pr-Sm-Dy-Gd alloy systems to find the substitute materials for replacing rare earth elements in permanent magnets.

Experience in die-, investment-, sand-casting, Ejection Melt Spinning solidification, laser printing, directional solidification and processing parameter optimization for Al-alloy, Ti-alloy, Ni-based superalloy and steel products using ANSYS and ProCast.

Stable and metastable phase transformation pathway investigation based on thermodynamics and kinetics.

Coating layer diffusion simulations and phase transformation based on thermodynamic and kinetic calculations.

Processing parameter optimization using thermodynamics, kinetics, and FEM.

Experience in cooling rate controlled amorphous and glass formation.

Experiments to identify reaction mechanisms and phase transformation parameters:

samples produced by 3D laser printing, high pressure gas atomization, ejection melt spinning, ARC melting, and directional solidification,

to identify reaction mechanisms: TEM, in situ TEM, SEM, XRD, HEXRD (in situ), EML

(Electromagnetic levitation), fine tube diffusion equipment used to investigate phase transformation and characterize the microstructures,

to generate thermodynamic data: solution calorimeter, adiabatic calorimeter, EML drop calorimetry, semi-adiabatic heat-pulse calorimeter, DSC, and DTA,

built solution calorimeter, EML drop calorimetry, and fine tube diffusion equipment.

Develop theory and computation program to describe the temperature-time-composition dependent chemical reactions under varying degrees of chemical partitioning.

Computational programs and software:

Energy calculations and processing simulations: include First-principles calculation

(VASP), Thermo-Calc and DICTRA, Precipitation calculation (TC-PRISMA), Chemical reaction pathway under varying degrees of chemical partitioning calculation, phase field simulation, ANSYS and ProCast,

Microstructure characterization: are analyzed with Reitveld refinement of diffraction pattern using GSAS, CaRIne-Crystallography, PowderCell, ImageJ, VESTA, PANalytical X’Pert HighScore Plus.

Computer program development using python, C++, Cmake, matlab and fortran. Postdoctoral fellow, Pennsylvania State University, University Park, PA, 04/2001-08/ 2004:

Alloy design based on thermodynamic and kinetic calculations and phase field simulations for:

NASA to understand the effects of Co-Cr-Hf-Mo-Re-Ta-Ti-W on Ni-based superalloy and develop thermodynamic and kinetic database to generate new type single crystal alloy,

Lawrence Livermore National lab to investigate the stability of the Pu-Ga-Fe-Al nuclear materials and find a way to stabilize the delta phase so that the safety of the nuclear warhead is guaranteed,

national science foundation (NSF) to develop dielectric materials Ba-O-Ti system,

NSF to develop refractory metal Re-Ta-W.

Computational methods: First-principles calculation using VASP, Thermo-Calc, and DICTRA. Postdoctoral fellow, University of California, Irvine, CA, 06/1999-06/2000:

The hydrogen storage material design in Pd-Rh-Ni-H system based on the thermodynamics and kinetics.

Shihuai Zhou

3

Postdoctoral fellow, Max-Planck-Institute for Metals research and Institute for Materials Research of University of Stuttgart, Stuttgart, Germany, 11/1998-06/1999:

Thermodynamic property measurements using solution calorimeter and Adiabatic calorimeter for liquid alloy.

The metallic glass stability investigation for the alloys in the ternary and quaternary Al-Mg- Cu-Y, Al-Zr-Cu-Ni and Al-La-Cu-Ta systems based on the thermodynamics.

Simulation program development using the C++ and FORTRAN. Senior Engineer, Beijing Fuel Injection Equipment Factory, Beijing, China, 03/1989-06/1992,

New steel development with the lamellar martensite (without twin martensite) microstructure for cutting the forest log based on the base of thermodynamics and kinetics to approach the expected mechanical properties

Heat treatment process design and processing parameter optimization for carburizing the fuel injection nozzle and camshaft

Education:

Ph. D. in Chemistry, 01/1996-11/1998, University of Stuttgart, Germany. M. S. in Metallurgy Engineering, 09/1986-12/1988 Dalian University of Technology, Dalian, China.

B. S. in Materials science and engineering, 09/1982-07/1986, Dalian University of Technology, Dalian, China.

Language

English,

German

Chinese

Publication list: [1-45]

[1] S.H. Zhou, X. Yang, F.Q. Meng, M.J. Kramer, R.T. Ott, R.E. Napolitano, Metastable intermetallic phases in the Al-Sm system, Mater. Today 21 (2019) 100679.

[2] F.Q.Meng, S.H.Zhou, R.T.Ott, M.J.Kramer, R.E.Napolitanoab, Competitive devitrification and metastable phase selection in amorphous Al-Sm, Materialia 9 (2020) 100595.

[3] S.H. Zhou, R.E. Napolitano, Diffusion measurements and assessment of the diffusivity for Al- Cu liquid alloys, to be published (2020).

[4] S.H. Zhou, F.Q. Meng, M.J. Kramer, R.T. Ott, Phase stability and chemical partitioning for the Co-Sm system: First-principles, experiments and solution-based modeling, non-equilibrium phase transformation, to be published (2020).

[5] L. Zhou, F.Q. Meng, S.H. Zhou, R.T. Ott, R.E. Napolitano, M.J. Kramer, Abnormal Meta-stable Nanoscale Eutectic Reaction Revealed by in-situ Observations, Acta Mater. 164 (2019) 697e703.

[6] R.E. Napolitano, S.H. Zhou, X. Yang, F.Q. Meng, Experimental Determination of the Allotropic Transition Temperature Between Tetragonal and Orthorhombic Al4Sm Metastable Phases, Metallurgical and Materials Transactions A 50 (2019) 1130–1136.

[7] R. Tutika, S.H. Zhou, R.E. Napolitano, M.D. Bartlett, Mechanical and Functional Tradeoffs in Multiphase Liquid Metal, Solid Particle Soft Composites, Advanced Functional Materials 28

(201*-*******.

[8] S.H. Zhou, C. Tackes, R. Napolitano, Enthalpy of Mixing in Al–Tb Liquid, Entropy 19(6) (2017) 290.

Shihuai Zhou

4

[9] Z. Ye, F. Zhang, Y. Sun, M.C. Nguyen, S.H. Zhou, K.-M. Ho, Structural hierarchy as a key to complex phase selection in Al-Sm, Phys. Rev. Mater. 1(3) (2017) 055601.

[10] Z. Ye, F.Q. Meng, F. Zhang, S.H. Zhou, K.-M. Ho, Observation of η-Al41Sm5: new evidence for structural hierarchy in Al-Sm alloys, eprint arXiv:1712.09638 (2017).

[11] S.H. Zhou, C. Liu, Y.X. Yao, Y. Du, L.J. Zhang, C.Z. Wang, K.M. Ho, M.J. Kramer, Magnetic BiMn-α phase synthesis prediction: First-principles calculation, thermodynamic modeling and nonequilibrium chemical partitioning, Comput. Mater. Sci. 120 (2016) 117-126.

[12] S.H. Zhou, M.J. Kramer, F.Q. Meng, R.W. McCallum, R.T. Ott, Thermodynamic database for the Co-Pr system, Data in Brief 6 (2016) 492-494.

[13] S.H. Zhou, M.J. Kramer, F.Q. Meng, R.W. McCallum, R.T. Ott, Chemical partitioning for the Co–Pr system: First-principles, experiments and energetic calculations to investigate the hard magnetic phase, Mater. Des. 90-201*-***-****.

[14] S.H. Zhou, Y. Huo, R.E. Napolitano, Phase Stability for the Pd-Si System: First-Principles, Experiments, and Solution-Based Modeling, Metall. Mater. Trans. A 47A(1) (2016) 194-208.

[15] X. Yang, Y. Tang, D. Cai, L. Zhang, Y. Du, S.H. Zhou, Comparative analysis of different numerical schemes in solute trapping simulations by using the phase-field model with finite interface dissipation, J. Min. Metall. Sect. B 52 (2016) 77-85.

[16] T. Wang, F. Zhang, L. Yang, X.W. Fang, S.H. Zhou, M.J. Kramer, C.Z. Wang, K.M. Ho, R.E. Napolitano, A computational study of diffusion in a glass-forming metallic liquid, Sci. Rep. 5

(2015) 10956.

[17] S.H. Zhou, Y. Wang, L.Q. Chen, Z.K. Liu, R.E. Napolitano, Solution-based thermodynamic modeling of the Ni–Al–Mo system using first-principles calculations, Calphad 46 (2014) 124-133.

[18] J. Kim, M. Paliwal, S. Zhou, H. Choi, I.-H. Jung, Critical Systematic Evaluation and Thermodynamic Optimization of the Mn-RE System (RE = Tb, Dy, Ho, Er, Tm and Lu) with Key Experiments for the Mn-Dy System, J. Phase Equilib. Diff. 35(6) (2014) 670-694.

[19] S.H. Zhou, R.E. Napolitano, Phase stability for the Cu–Zr system: First-principles, experiments and solution-based modeling, Acta Mater. 58(6) (201*-****-****.

[20] S.H. Zhou, Y. Wang, L.Q. Chen, Z.K. Liu, R.E. Napolitano, Solution-based thermodynamic modeling of the Ni–Ta and Ni–Mo–Ta systems using first-principle calculations, Calphad 33(4)

(2009) 631-641.

[21] S.H. Zhou, R.E. Napolitano, Energetics of nonequilibrium solidification in Al-Sm, Phys. Rev. B 78(18) (2008) 184111.

[22] S.H. Zhou, R.E. Napolitano, Identification of the B33 martensite phase in Cu–Zr using first- principles and X-ray diffraction, Scripta Mater. 59(10) (200*-****-****.

[23] S.H. Zhou, R.E. Napolitano, Modeling of Thermodynamic Properties and Phase Equilibria for the Al-Sm Binary System, Metall. Mater. Trans. A 39(3) (2008) 502-512.

[24] S.H. Zhou, Y. Wang, F.G. Shi, L.-Q. Chen, Z.-K. Liu, R.E. Napolitano, Modeling of Thermodynamic Properties and Phase Equilibria for the Cu-Mg Binary System, J. Phase Equilib. Diffu. 28 (2007) 158-166.

[25] S.H. Zhou, R.E. Napolitano, The stability of Al11Sm3 (Al4Sm) phases in the Al-Sm binary system, Metall. Mater. Trans. A 38A (200*-****-****.

[26] S.H. Zhou, R.E. Napolitano, Thermodynamic limits for partitionless crystallization in the binary Cu-Mg system, J. Phase Equilib. Diffu. 28(4) (2007) 328-334.

[27] P.E.A. Turchi, L. Kaufman, S.H. Zhou, Z.-K. Liu, Thermostatics and kinetics of transformations in Pu-based alloys, J. Alloys Compd. 444-445 (2007) 28-35.

[28] S.H. Zhou, R.E. Napolitano, Phase equilibria and thermodynamic limits for partitionless crystallization in the Al-La binary system, Acta Mater. 54 (2006) 831-840. 5

[29] S.H. Zhou, Y. Wang, C. Jiang, J.Z. Zhu, L.-Q. Chen, Z.-K. Liu, First-Principles Calculations and Thermodynamic Modeling of the Ni-Mo System, Mater. Sci. Eng. A 397 (2005) 288-296.

[30] S.H. Zhou, C. Randall, Z.K. Liu, Thermodynamic modeling of the binary Barium-Oxygen system, J. Am. Ceram. Soc. 88-200*-****-****.

[31] Y. Wang, C. Woodward, S.H. Zhou, Z.K. Liu, L.Q. Chen, Structural stability of Ni–Mo compounds from first-principles calculations, Scripta Mater. 52(1) (2005) 17-20.

[32] J.Z. Zhu, T. Wang, S.H. Zhou, Z.K. Liu, L.Q. Chen, Quantitative interface models for simulating microstructure evolution, Acta Mater. 52(4) (2004) 833-840.

[33] J.Z. Zhu, T. Wang, A.J. Ardell, S.H. Zhou, Z.K. Liu, L.Q. Chen, Three-dimensional phase-field simulations of coarsening kinetics of gamma ' particles in binary Ni-Al alloys, Acta Mater. 52(9)

(200*-****-****.

[34] S.H. Zhou, Y. Wang, J.Z. Zhu, T. Wang, L.Q. Chen, R.A. MacKay, Z.K. Liu, Integration of Computational Tools for Designing Ni-Base Superalloys, in: K.A. Green, H. Harada, T.M. Pollock, T.E. Howson, R.C. Reed (Eds.) Superalloys 2004, 2004, pp. 969-976.

[35] P.E.A. Turchi, L. Kaufman, Z.K. Liu, S.H. Zhou, Thermodynamics and Kinetics of phase transformation in Plutinium Alloys-Part I, Lawrence Livermore National Lab, 2004.

[36] P.E.A. Turchi, P.G. Allen, L. Kaufman, S.H. Zhou, Z.K. Liu, Thermodynamics of Pu-Based Alloys, in: G.D. Jarvinen (Ed.) AIP Conference Proceedings, Gordon D. Jarvinen, Albuquerquer, New Mexico (USA), 2003, p. 212.

[37] Z.-J. Liu, S.H. Zhou, X.X. Xi, Z.K. Liu, Thermodynamic Reactivity of Magnesium Vapor with Substrate Materials in During MgB2 Deposition, Physica C 397 (2003) 87-94.

[38] S.H. Zhou, Z.K. Liu, Evaluation of the thermodynamic properties and phase equilibria of the Re-Ta-W system, Metall. Mater. Trans. A 33(9) (200*-****-****.

[39] S.H. Zhou, L.Q. Chen, R.A. MacKay, Z.K. Liu, Evaluation of the Thermodynamic Properties and Phase Equilibria of the Ordered gamma prime and Disordered gamma Phases in the Ni-Al-Ta System, MRS2002:Symposium: Solid-State Chemistry of Inorganic Materials IV (2002) DD11.25.1-8.

[40] S.H. Zhou, F. Sommer, Calorimetric study of liquid and undercooled liquid Al-Ni-Zr alloys, J. Non-Cryst. Solids 252 (1999) 572-576.

[41] S.H. Zhou, F. Sommer, The enthalpy of formation and the heat capacity of liquid Cu- La-Ni alloys, J. Alloy. Compd. 289(1-2) (1999) 145-151.

[42] S.H. Zhou, F. Sommer, Thermodynamic properties of liquid, undercooled liquid and amorphous Al-Cu-La-Ni alloys, J. Alloy. Compd. 292(1-2) (1999) 156-161.

[43] S.H. Zhou, J. Schmid, F. Sommer, Thermodynamic properties of liquid, undercooled liquid and amorphous Al-Cu-Zr and Al-Cu-Ni-Zr alloys, Thermochim. Acta 339(1-2) (1999) 1-9.

[44] S.H. Zhou, F. Sommer, The enthalpy of formation and the heat capacity of liquid and undercooled liquid Al-Cu-La alloys, Ber. Bunsen-Ges. Phys. Chem. Chem. Phys. 102(9) (199*-****-****.

[45] S.H. Zhou, Thermodynamic Study of Ternary and Quaternary Amorphous Alloy, Max-Planck- Institute for Metals research and Institute for Materials Research of University of Stuttgart, University of Stuttgart, Stuttgart, Germany, 1998. Presentation:

1. S. H. Zhou, X. Yang, F. Meng, R. T. Ott, M. J. Kramer, Ralph E. Napolitano, Determining metastable phase transformation temperature between Al4Sm- and Al4Sm-, 2018 TMS: SYMPOSIUM: Advanced Real Time Optical Imaging, Phoenix, AZ (March 11-15, 2018). 2. S. H. Zhou, H. S. Kim, F. Q. Meng, M. J. Kramer, R. T. Ott, Rapid Assessment Methodologies- Thermodynamic database of the Pr-Fe system determined with first-principles, solution 6

calorimeter and external magnetic field and thermodynamic applications for extracting Nd and Dy from NdFeB magnet scrap, 5th Annual Meeting of the Critical Materials Institute, Livermore, CA (August 29-31, 2017).

3. S. H. Zhou (invited), X. Yang, F. Meng, R. T. Ott, M. J. Kramer, Ralph E. Napolitano, CALPHAD Beyond its Limitation, Central South University, Changsha, Hunan, China (June 18-24, 2017). 4. S. H. Zhou, F. Q. Meng, M. J. Kramer, R. T. Ott, Rapid Assessment Methodologies- Nonequilibrium phase transformation in Co-Pr system determined with first-principles, solution calorimeter and external magnetic field, 3th Annual Meeting of the Critical Materials Institute, Idaho Falls, ID (August 4-6, 2015). 5. S. H. Zhou (invited), F. Meng, R. T. Ott, M. J. Kramer, Ralph E. Napolitano, Energetic analysis of nonequilibrium phase transformations, CALPHAD XLIII, Changsha, Hunan, China (June 1- 8, 2014).

6. S. H. Zhou (invited), F. Meng, R. T. Ott, M. J. Kramer, Ralph E. Napolitano, Enthalpy measurements using solution calorimeter and electromagnetic levitation combined with first-principles calculations, MS&T, Pittsburgh, PA, (October 12-16, 2014). 7. S. H. Zhou (invited), R. T. Ott, M. J. Kramer, Ralph E. Napolitano, Nonequilibrium phase transformation calculation with energetics, Central South University, Changsha, Hunan, China (November 30-31, 2012).

8. S. H. Zhou, R.E. Napolitano, Nonequilibrium phase transformation calculation with Energetics, CALPHAD XL, Rio de Janeiro, Brazil (May 22-27 2011). 9. S. H. Zhou (invited), R. T. Ott, M. J. Kramer, Ralph E. Napolitano, Solution calorimeter for determining enthalpy of formation for a compound or enthalpies of mixing for liquid and amorphous phases, The 39th annual conference on Thermal Analysis and Applications,

(August 7 2011)

10. Ralph. E. Napolitano, S. H. Zhou, Phase stability and selection in Al-Sm binary alloys

(Invited), 2008 MS&T: SYMPOSIUM: Phase Stability, Diffusion and Their Applications, David L. Lawrence Convention Center, Pittsburgh, Pennsylvania (October 5-9, 2008). 11. S. H. Zhou, Ralph.E. Napolitano, Thermodynamics of nonequilibrium partitioning during crystallization of highly undercooled Al-Sm melts, 2007 MS&T: SYMPOSIUM: Phase Stability, Diffusion and Their Applications, Detroit, Michigan (Sep 16-20 2007). 12. S. H. Zhou, Zhihong Tang, Mufit Akinc, Matthew J. Kramer and Ralph.E. Napolitano, Phase Equilibria and Thermodynamic Limits for Partitionless Crystallization in the Nb-B Binary System, 2006 TMS Annual Meeting Symposium: Computational Phase Transformations, San Antonio, Texas (March 12-16 2006). 13. T. Wang, Y. Wang, C. Ravi, S. Y. Hu, J. X. Zhang, S. H. Zhou, C. Wolverton, Z. K. Liu and L. Q. Chen, Integration of Computational Tools for Predicting Thermodynamics and Precipitate Microstructure Evolution, in the symposium "Materials Design Approaches and Experiences II: New Tools", TMS 2006 Annual Meeting, San Antonio, TX., (Invited), 2006. 14. T. Wang, S. H. Zhou, J.-Z. Zhu, L.-Q. Chen and Z.-K. Liu, Diffusion in fcc and L12 Phases of Ni-Al-Mo, TMS Annual Meeting, San Francisco, February, 2005 15. T. Wang, Y. Wang, J. Z. Zhu, S. H. Zhou, R. A. MacKay, Z.-K. Liu and L. Q. Chen, Computational Tools for Ni-Base Superalloys, Materials Day, April, 2005. 16. S. H. Zhou (invited), Application of Thermodynamic Database for Predicting the Amorphous Alloys, Ames Laboratory and Iowa State University, Ames, IA (June 25 2004). 17. S. H. Zhou (invited), Integration of Computational Tools for Designing Materials, Georgia Institute of Technology, Atlanta, Georgia (April 29 2004). 7

18. S. H. Zhou (invited), Research Activities on Computational Thermodynamics, Kinetics and System Materials Design with First-Principles Calculation and Experimental Investigation, Georgia Institute of Technology, Atlanta, Georgia (April 30 2004). 19. T. Wang, S. H. Zhou, J. Z. Zhu, Y. Wang, L. Q. Chen, Z. K. Liu and R. A. MacKay, Database Development and Microstructure Modeling in Ni-base Superalloys, ASM Materials Solutions Conference & Exposition, Columbus, Ohio, 2004

20. Y. Wang, S. H. Zhou, Z.-K. Liu and L.-Q. Chen, The Calculated Energetics of Ni-Mo and Ni-Ta Alloy, TMS Annual Meeting, Charlotte, NC, March, 2004 21. S. H. Zhou, Y. Wang, J. Z. Zhu, T. Wang, L. Q. Chen, R. A. MacKay and Z.-K. Liu, Integration of Computational Tools for Designing Ni-base Superalloys, 10th Int. Symposium on Superalloys, Champion, PA, September 20-23, 2004.

22. J. Zhu, S. H. Zhou, Y. Wang, T. Wang, Z. K. Liu, C. Woodward, R. A. MacKay, A. J. Ardell and L.-Q. Chen, Modeling Thermodynamics and Microstructure Evolution of Ni-Base Superalloys, TMS Annual Meeting, Charlotte, NC, March, 2004. 23. S. H. Zhou, L. Q. Chen and Z. K. Liu, Thermodynamic Modeling of Ni-Mo-Ta System Aided by First-Principles Calculations, 2004 TMS Annual Meeting Symposium: Computational Phase Transformations, Charlotte, North Carolina (2004 (March 14-18 2004)). 24. S. H. Zhou, L. Q. Chen, R. A. MacKay, C. F. Woodward and Z. K. Liu, Evaluation of the Thermodynamic Properties of the Ni-Mo System, at International Conference on Phase Diagram Calculations and Computational Thermochemistry-CALPHADXXXII, La Malbaie, Quebec, Canada (2003 (May 25-30, 2003)).

25. S. H. Zhou, L. Q. Chen and Z. K. Liu, The Quaternary Ni-Al-Mo-Ta Thermodynamic Database for Ni-Base Superalloys, at 2003 TMS Annual Meeting Symposium: Computational Phase Transformations, San Diego, California (2003 (March 3-6 2003)) 26. S. H. Zhou, L. Q. Chen, R. A. MacKay and Z.-K. Liu, Evaluation of the Thermodynamic Properties and Phase Equilibria of the Ordered g' and Disordered g Phases in the Ni-Al-Ta System, at, Hynes Convention Center & Sheraton Boston Hotel and Towers, Boston, Massachusetts (December 2-6, 2002).

27. S. H. Zhou, L.-Q. Chen and Z.-K. Liu, Evaluation of the Thermodynamic Properties and Phase Equilibira of the Ni Superalloy Ni-Mo and Ni-Mo-Ta Systems, at, Colby College, Waterville, ME (2002 (August 4-9, 2002)).

28. J. Schmid, S. H. Zhou, V. Wituysiewicz and F. Sommer, Thermodynamic Properties of the liquid, undercooled liquid and amorphous alloys in Al-Cu-La-Ni and Al-Cu-Ni-Zr systems, at Unterkuehlte metallschmelzen: Phasenselektion und Glasbildung (Undercooled liquid: phase selection and glass formation), Hambury, Germany (2001). 29. S. H. Zhou and F. Sommer, Thermodynamische Eienschaften fluessiger, unterkuehlt fuessiger und glasartiger Ni-Zr, Al-Cu-Zr, Al-Ni-Zr und Al-Cu-Ni-Zr-Legierungen

(Thermodynamic Properties of the liquid, undercooled liquid and amorphous Ni-Zr, Al-Cu- Zr, Al-Ni-Zr und Al-Cu-Ni-Zr alloys), at Unterkuehlte metallschmelzen: Phasenselektion und Glasbildung (undercooled liquid: phase selection and glass formation), Max-Planck- Institute, Stuttgart, Germany (1999).

30. S. H. Zhou and F. Sommer, Thermodynamische Eienschaften fluessiger, unterkuehlt fuessiger und glasartiger Al-Cu-La-Ni-Legierungen (Thermodynamic Properties of the liquid, undercooled liquid and amorphous Al-Cu-La-Ni alloys), at Unterkuehlte metallschmelzen: Phasenselektion und Glasbildung (undercooled liquid: phase selection and glass formation), Bonn-Bad Godesberg, Germany (1999). 31. S. H. Zhou, Ph. D. Dissertation Defense - Study of Ternary and Quaternary Metastable Alloy, University of Stuttgart (November 1998).



Contact this candidate